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•  Program goals being addressed	


‣  This project targets one of the key objectives of the Program’s Core R&D element 
(Simulation and Risk Assessment) 	


‣  Develop technologies that will support industries’ ability to predict���
CO2 storage capacity in geologic formations to within ±30 percent.	


•  Project benefits	


‣  a physically-based approach for estimating capacity and leakage risk at the basin 
scale	


‣  facilitate deployment of CCS by providing the basis for a simpler and more 
coherent regulatory structure than an “individual-point-of-injection” permitting 
approach	


‣  lead to better science-based policy for post-closure design and transfer of 
responsibility to the State	


Benefit to the Program	




•  Main Objective: develop tools for better understanding, modeling and 
risk assessment of CO2 permanence in geologic formations at the 
geologic basin scale	


•  Specific technical objectives	


‣  develop mathematical models of capacity and injectivity at the basin scale	


‣  apply quantitative risk assessment methodologies that will inform on CO2 
permanence	


‣  apply the models to geologic basins across the continental United States	


Project Overview: ���
Goals and Objectives	




Tasks – Overview	

Task  
No.	


Task Description	
 Task 
Duration	


Task 
Funding	


1	
 Project Management and Planning	
 12/01/2009 – 
11/30/2012	


$9968	


2	
 Technology Status Assessment	
 12/01/2009 – 
2/28/2010	


$9968	


3	
 Develop mathematical models of CO2 migration	
 12/01/2009 – 
11/30/2011	


$119618	


4	
 Apply models to basins in the continental U.S.	
 6/01/2011 – 
11/30/2012	


$43195	


5	
 Estimate CO2 storage capacity and injectivity	
 6/01/2011 – 
11/30/2012	


$43195	


6	
 Develop and apply risk assessment methodologies	
 12/01/2010 – 
11/30/2012	


$89714	


7	
 Integrate CCS research in the classroom	
 12/01/2009 – 
11/30/2012	


$43195	




Project Schedule	




Project Milestones	

Milestone 	
 Planned 

Completion 
Date	


Actual 
Completion 

Date	


1. Revise Project Management and Plan	
 1/31/2010	
 1/31/2010	


2. Project kick-off meeting	
 3/30/2010	
 3/30/2010	


3. Technology Status Assessment	
 3/30/2010	
 3/30/2010	


4. Educational program instituted	
 6/30/2010	
 6/30/2010	


5. Mathematical models of pressure evolution���
    and capillary trapping	


12/31/2010	
 12/31/2010	




Project Milestones���
(cont’d)	


Milestone 	
 Planned 
Completion 

Date	


Actual 
Completion 

Date	


6. Mathematical models of dissolution and caprock leakage	
 12/31/2011	
 12/31/2011	

	


7. Software tool to estimate storage capacity	
 12/31/2011	

	


12/31/2011	

	


8. Tool for visualization of CO2 footprints in Google Earth	
 12/31/2011	

	


9. Synthesis of geologic and hydrogeologic data of���
    U.S. basins	


12/31/2011	

	


12/31/2011	

	


10. Application of migration mathematical models to���
       U.S. basins 	


12/31/2011	

	


12/31/2011	

	




Project Milestones���
(concl’d)	


Milestone 	
 Planned 
Completion 

Date	


Actual 
Completion 

Date	


11. Application of leakage mathematical models to���
      U.S. basins	


11/30/2012	


12. Capacity and injectivity estimates from dynamic models	
 11/30/2012	

	


13. Development and application of risk assessment���
       methodology	


11/30/2012	

	


14. Deliver CCS short course	
 7/31/2010 
(every year)	


7/31/2010 
(every year)	


15. Final project synthesis and report	
 11/30/2012	

	




•  Developed mathematical model of CO2 migration with capillary 
trapping and solubility trapping from convective mixing on sloping 
aquifers with regional groundwater flow	


•  Developed mathematical models of overpressure from CO2 injection 
in deep saline formations	


•  Developed new methodology for basin-specific storage capacity 
estimates that incorporate both constraints: CO2 migration and 
pressure evolution	


•  Applied the new methodology to a selection of saline aquifers across 
the United States to determine the dynamic storage capacity and the 
lifetime of CCS as a climate-change mitigation technology	


•  Published four journal papers (TIPM, JFM, PNAS), ���
five peer-reviewed conference papers (GHGT, CMWR), ���
and over twenty conference presentations	


Accomplishments to Date	




Summary of Results	


•  Storage capacity is dynamic, and depends on duration of injection: ���
both CO2 migration and pressure dissipation may limit storage capacity	


•  Storage capacity in underground formations imposes a constraint, ���
which is dependent on the CCS injection scenario	


‣  Cumulative injection scales as I ~ T2 (“demand curve”)	

‣  Geologic capacity scales at most as C ~ T1/2 (“supply curve”) ���
	


•  The crossover of these two curves constrains the life span of CCS	


‣  In the case of the United States, this is in the range of 100-300 years	




x

y

Storage Must be Understood at the 
Scale of Geologic Basins	


‣  Deep, thin	


‣  Capped by impermeable layers	


‣  Horizontal or weakly sloped	


‣  Slow natural groundwater through-flow	

100 wells, 1 km spacing

# ⇠ 1�

Un < 1m/year



•  Storage capacity informs about the physical limitations of CCS, over 
which economic and regulatory limitations must be imposed	


•  We develop basin-scale capacity estimates based on fluid dynamics	


•  Two constraints:	

‣  The footprint of the migrating CO2 plume must fit in the basin	


‣  The pressure induced by injection must not fracture the rock���
	


•  Both constraints can be limiting in practice, and which one applies is 
dependent on the aquifer and the injection period	


Storage Capacity	




Some controversy	

•  “underground carbon dioxide sequestration via bulk CO2 

injection is not feasible at any cost.” (Ehligh-Economides and 
Economides, JPSE 2010)	


•  “CCS can never work, US study says” (Canada Free Press on 
Ehlig-Economides and Economides, 2010)	


13	




Some controversy	


•  … and some rebuttals	


‣  “Open or closed? A discussion of the mistaken assumptions in the 
Economides pressure analysis of carbon sequestration”���
(Cavanagh, Haszeldine, and Blunt, JPSE 2010)	


‣  “The realities of storing carbon dioxide – A response to CO2 
storage capacity issues raised by Ehlig-Economides & Economides”���
(Chadwick et al., Nature Preceedings, 2010)	


14	




Traditional Approach	


15	


Source: USDOE Methodology for Development of Geologic Storage Estimates for Carbon Dioxide, 2008	

See also: Bachu et al., IJGHGC 2007	




Traditional Approach	

•  Splitting the sources of trapping capacity	


‣  Stratigraphic traps	


‣  Residual-gas traps	


‣  Solubility traps	


‣  Mineral traps	

✴ Highly uncertain and time-dependent	


16	


(Bachu et al., IJGHGC 2007)	


€ 

MCO2,strat = ρCO2Vtrapφ(1− Swi)Cc

€ 

MCO2,resid = ρCO2VsweepφSgr

€ 

MCO2,solub =VaquiferφρwXCO2Cs



Traditional Approach	

•  Splitting the sources of trapping capacity	


	


   “estimation of the CO2 storage capacity through residual-gas 
trapping can be achieved only in local- and site-scale assessments, 
but not in basin- and regional-scale assessments.”	


	


•  Here we will show how to obtain basin-scale storage capacities 
that include residual and solubility trapping	


17	


(Bachu et al., IJGHGC 2007)	




Migration Model	


18	


CO2 	


groundwater	


The geologic setting of our migration model has two key features:	


•   basin scale	

•   line-drive array of wells	




Capillary 
trapping	


Dissolution 
trapping	


(Juanes et al., Water Resour. Res. 2006)	

(Juanes, MacMinn & Szulczewski, Transp. Porous Med. 2010)	

(MacMinn, Szulzcewski, Juanes, J. Fluid. Mech. 2010, 2011)	


Trapping Mechanisms	




Modeling Approximations	


‣  sharp interfaces	


‣  negligible capillary forces	


‣  negligible fluid compressibility	


‣  thin aspect ratio (vertical flow equilibrium / “Dupuit Approx.”)	

‣  homogeneous properties	


‣  negligible rock compressibility	


Fluid	


Aquifer	
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JFM 2010	
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Juanes & MacMinn	

SPE 2008	
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‣  Complete analytical solution	


‣  Interaction between flow and slope	




Dissolution by Convective Mixing	
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Essential features:	


‣   CO2 dissolves from the plume at a constant rate	


‣   Dissolution does not drive residual trapping	


‣   Dissolution stops when the water column saturates	




•  Macroscopic measure of storage efficiency	

‣  How much aquifer is “used” per unit CO2 stored?	


★ How does this depend on                      ?"

Efficiency Factor	


Bachu et al.	

Int. J. GHGC 2007	


volume of CO2	


volume of aquifer	


M , � , Ns/Nf

" = =
2

⇠T
thickness	


footprint	




Efficiency Factor	




Analytical Solutions with Dissolution	




We estimate aquifer capacity by using the model in reverse	


Forward  	


Reverse	


Set injection volume	
 Calculate footprint	


Set footprint to aquifer size	
 Calculate injection volume	


Migration Storage Capacity	




CO2 	


groundwater	


The geologic setting of our pressure model has three key features:	


•   basin scale	

•   line-drive array of wells	

•   multiple layers	


Pressure Model	




•   Lateral pressure dissipation	


‣   no-flow at faults and pinchouts	

‣   constant pressure at outcrops	


•   Vertical pressure dissipation	


‣   major contributor to pressure dissipation	


•   Ramp-up, ramp-down injection scenario	


injection
rate

time

Model Features	




We model the overburden and underburden with average, 
anisotropic permeabilities 	


Vertical Pressure Dissipation	




We estimate pressure-limited capacity by using the model in reverse	


Forward  	


Reverse	


set injection scenario	
 calculate maximum pressure	


set maximum pressure 	

to fracture pressure	


calculate injection scenario 	

and volume	


injection
rate

time

injection
rate

time

Pressure Storage Capacity	




•  Pressure capacity depends on the duration of injection T	


•  If the aquifer is laterally infinite and the overburden and underburden 	

  are impermeable, then capacity grows as      	


capacity	


injection duration	


Pressure Storage Capacity	




capacity	


injection duration	


infinite aquifer	


closed aquifer	


open aquifer	


If the aquifer is laterally bounded, the capacity growth deviates from      	


Pressure Storage Capacity	




Storage capacity is dynamic	


-  For short durations of injection, overpressure is more limiting	


-  For long durations of injection, CO2 migration is more limiting	


Capacity Estimates from Fluid Dynamics	

Szulczewski and Juanes���

(GHGT 2010)	




Capacity Estimates for the United States	


•  Studied 20 well arrays in 12 saline aquifers throughout the U.S.	


‣  Largest, most structurally sound, best characterized aquifers	


‣  Capacities between 1 and 18 GtCO2���
	


•  8 were limited by pressure, 12 by migration	


•  Estimates are representative of geologic capacity constraints nationwide	
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Storage Footprint for 100-year Injection	

(Szulzcewski, MacMinn, Herzog & Juanes, PNAS 2012)	




•  We adopt a simplified���
     CO2-production curve���
     that resembles emissions���
     scenarios	


•  Rates increase during���
     deployment and then���
     decrease during phase-out	


•  Cumulative storage���
     increases quadratically���
     with injection duration	


What Does This All Mean for 
Climate Change Mitigation?	


one-seventh of the CO2 production, as proposed in ref. 3, the
crossover time is at least 300 y.

Discussion
We have shown that in the United States, the storage supply
from 11 major deep saline aquifers is sufficient to store large
quantities of CO2 for long times. If the task of stabilizing emis-
sions is divided among several technologies such that the storage
demand for CCS is one-seventh of the CO2 produced, CCS can
operate for >300 y. If the storage demand is all of the surplus CO2
produced, CSS can operate for at least 100 y. This result suggests
that geologic storage supply will enable CCS to play a major role
within the portfolio of climate-change mitigation options.
Although the storage supply is large, many regulatory and

economic factors will play an important role in determining the
degree to which this storage supply can be utilized. The suc-
cessful large-scale deployment of CCS will require, for example,
detailed exploration for site selection (26) and comprehensive
policy to establish safety and monitoring regulations and drive
adoption. Absence of comprehensive policy, in particular, has
been identified as the key barrier to the deployment of CCS (27).
Understanding the lifetime of CCS is essential for informing

government policy. Because storage supply depends fundamentally

on the duration of CCS, policymakers should consider the total
time over which CCS will be deployed to identify storage targets or
deployment rates that comply with geologic constraints. Alterna-
tively, policymakers should set storage targets, recognizing that they
can be achieved only for a finite time. Policy for the development of
low-emissions energy sources should also consider the lifetime of
CCS, which constrains the timescales over which these technologies
must be deployed to eventually replace fossil fuels.
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Fig. 3. (A) Worldwide emission pathways that would stabilize the atmo-
spheric concentration of CO2 exhibit a characteristic shape: Emissions rise to
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750 ppmCO2) (25). Ourmodel of CO2 production pathways in the United States
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Supply and Demand Determine 
CCS Lifetime	


•  Geologic capacity scales at most as C ~ T1/2 (“supply curve”)	

•  Cumulative injection scales as I ~ T2 (“demand curve”)	


‣  Large-scale implementation of CCS is a geologically-viable 
climate-change mitigation option in the United States 
over the next century	


(Szulzcewski, MacMinn, ���
Herzog & Juanes, PNAS 2012)	
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Application to the Fox Hills Sandstone	
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We inject where there are few or no faults	
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We inject where the caprock is sound	


0.14 - 0.25	

0.25 - 0.34	

0.34 - 0.40	

0.40 - 0.50	

0.50 - 0.67	


Percent sand 	

in caprock	


caprock boundary	
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46	


We inject where aquifer is > 800m deep	


caprock boundary	
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47	


We neglect groundwater flow since slope is more important:	
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48	


We calculate a migration-based capacity of 8 Gt CO2	
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49	


Outcrops are taken as constant-pressure boundaries	
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50	


The pressure-limited capacity rises with injection time as expected	




51	


pressure-limited	


migration-limited	


•   The actual capacity is the lower capacity	


•   For small injection times, the pressure capacity is more limiting	


•   For long injection times, the migration-based capacity is more limiting	



